Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lee, Seokcheon (Ed.)Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences and those between resource availability in near‐future requests and the anticipated duration of the immediate incident request, should be considered through a look‐ahead model when making current‐stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The UAVs’ role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAVs’ active sensing can shorten response time of emergency vehicles and reduce uncertainties associated with the estimated incident delay impact.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Current free and subscription-based trip planners have heavily focused on providing available transit options to improve the first and last-mile connectivity to the destination. However, those trip planners may not truly be multimodal to vulnerable road users (VRU)s since those selected side walk routes may not be accessible or feasible for people with disability. Depending on the level of availability of digital twin of travelers behaviors and sidewalk inventory, providing the personalized suggestion about the sidewalk with route features coupled with transit service reliability could be useful and happier transit riders may boost public transit demand/funding and reduce rush hour congestion. In this paper, the adaptive trip planner considers the real-time impact of environment changes on pedestrian route choice preferences (e.g., fatigue, weather conditions, unexpected construction, road congestion) and tolerance level in response to transit service uncertainty. Side walk inventory is integrated in directed hypergraph on the General Transit Feed Specification to specify traveler utilities as weights on the hyperedge. A realistic assessment of the effect of the user-defined preferences on a traveler’s path choice is presented for a section of the Boston transit network, with schedule data from the Massachusetts Bay Transportation Authority. Different maximum utility values are presented as a function of varying traveler’s risk-tolerance levels. In response to unprecedented climate change, poverty, and inflation, this new trip planner can be adopted by state agencies to boost their existing public transit demand without extra effortsmore » « less
-
Estimating multimodal distributions of travel times (TT) from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized (PIR) prediction model is developed that shares observations across similarly distributed network segments over time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. The model includes hierarchical Kalman filtering (KF) updates using the traffic fundamental diagram to regulate any spurious correlation and estimates the mixture of TT distributions from observations at the current location and time sampled from the multimodal and multivariate TT distributions at other locations and times. In order to overcome the limitations of KF, this study developed dynamic graph neural network (GCN) model which uses time evolving spatial correlations. The KF model with PIR predicts traffic state with 19% more accuracy than TMML model in Park et al.(2022) and GCN model will further reduce the uncertainty in prediction. This study uses information gain from explored correlated links to obtain accurate predictions for unexplored ones.more » « less
-
We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings.more » « less
-
While there has been significant progress on statistical theories in the information community, there is a lack of studies in information-theoretic distributed resource allocation to maximize information gain. With advanced technologies of unmanned aerial vehicles (UAVs) in response to corresponding revised FAA regulations, this study focuses on developing a new framework for utilizing UAVs in incident management. As a result of new computing technologies, predictive decision-making studies have recently improved ERV allocations for a sequence of incidents; however, these ground-based operations do not simultaneously capture network-wide information. This study incorporates a real-time aerial view using UAVs with three key improvements. First, aerial observations update the status of the freeway shoulder, allowing an ERV to safely travel at full speed. Second, observing parameters of the congestion shockwave provides accurate measurements of the true impact of an incident. Third, real-time information can be gathered on the clearance progress of an incident scene. We automate UAV and ERV allocation while satisfying constraints between these vehicles using a distributed constraint optimization problem (DCOP) framework. To find the optimal assignment of vehicles, the proposed model is formulated and solved using the Max-Sum approach. The system utility convergence is presented for different scenarios of grid size, number of incidents, and number of vehicles. We also present the solution of our model using the Distributed Stochastic Algorithm (DSA). DSA with exploration heuristics outperformed the Max-Sum algorithm when probability threshold p=0.5 but degrades for higher values of p.more » « less
-
Abstract Lack of high‐resolution observations in the inner‐core of tropical cyclones remains a key issue when constructing an accurate initial state of the storm structure. The major implication of an improper initial state is the poor predictability of the future state of the storm. The size and associated hazard from strong winds at the inner‐core make it impossible to sample this region entirely. However, targeting regions of the inner‐core where forecasted atmospheric measurements have high uncertainty can significantly improve the accuracy of measurements for the initial state of the storm. This study provides a scheme for targeted high‐resolution observations for small Unmanned Aircraft Systems (sUAS) platforms (e.g., Coyote sUAS) to improve the estimates of the atmospheric measurement in the inner‐core structure. The benefit of observation is calculated based on the high‐fidelity state‐of‐the‐art hurricane ensemble data assimilation system. Potential locations with the mostinformativemeasurements are identified through exploration of various simulation‐based solutions depending on the state variables (e.g., pressure, temperature, wind speed, relative humidity) and a combined representation of those variables. A sampling‐based sUAS path planning algorithm considers energy usage when locating the regions of highly uncertain prediction of measurements, allowing sUAS to maximize the benefit of observation. Robustness analysis of our algorithm for multiple scenarios of sUAS drop and goal locations shows satisfactory performance against benchmark similar to current NOAA field campaign. With optimized sUAS observations, a data assimilation analysis shows significant improvements of up to 4% in the tropical cyclone structure estimates after resolving uncertainties at targeted locations.more » « less
-
Abstract This research presents an adaptive and personalized routing model that enables individuals with mobility impairments to save their route preferences to a mobility assistant platform. The proactive approach based on anticipated user need accommodates vulnerable road users' personalized optimum dynamic routing rather than a reactive approach passively awaiting input. Most currently available trip planners target the general public's use of simpler route options prioritized based on static road characteristics. These static normative approaches are only satisfactory when conditions of intermediate intersections in the network are consistent, a constant rate of change occurs per each change of the segment condition, and the same fixed routes are valid every day regardless of the user preference. In this study, the vulnerable road user mobility problem is modeled by accommodating personalized preferences changing by time, sidewalk segment traversability, and the interaction between sidewalk factors and weather conditions for each segment contributing to a path choice. The developed reinforcement learning solution presents a lower average cost of personalized, accessible, and optimal path choices in various trip scenarios and superior to traditional shortest path algorithms (e.g., Dijkstra) with static and dynamic extensions.more » « less
An official website of the United States government

Full Text Available